Use of biased neighborhood structures in multiobjective memetic algorithms
نویسندگان
چکیده
In this paper, we examine the use of biased neighborhood structures for local search in multiobjective memetic algorithms. Under a biased neighborhood structure, each neighbor of the current solution has a different probability to be sampled in local search. In standard local search, all neighbors of the current solution usually have the same probability because they are randomly sampled. On the other hand, we assign larger probabilities to more promising neighbors in order to improve the search ability of multiobjective memetic algorithms. In this paper, we first explain our multiobjective memetic algorithm, which is a simple hybrid algorithm of NSGA-II and local search. Then we explain its variants with biased neighborhood structures for multiobjective 0/1 knapsack and flowshop scheduling problems. Finally we examine the performance of each variant through computational experiments. Experimental results show that the use of biased neighborhood structures clearly improves the performance of our multiobjective memetic
منابع مشابه
Flexible Job Shop Scheduling Using a Multiobjective Memetic Algorithm
This paper addresses the flexible job shop scheduling problem with minimization of the makespan, maximum machine workload, and total machine workload as the objectives. A multiobjective memetic algorithm is proposed. It belongs to the integrated approach, which deals with the routing and sequencing sub-problems together. Dominance-based and aggregation-based fitness assignment methods are used ...
متن کاملFuzzy particle swarm optimization with nearest-better neighborhood for multimodal optimization
In the last decades, many efforts have been made to solve multimodal optimization problems using Particle Swarm Optimization (PSO). To produce good results, these PSO algorithms need to specify some niching parameters to define the local neighborhood. In this paper, our motivation is to propose the novel neighborhood structures that remove undesirable niching parameters without sacrificing perf...
متن کاملA Simple yet Efficient Multiobjective Combinatorial Optimization Method Using Decomposition and Pareto Local Search
Combining ideas from evolutionary algorithms, decomposition approaches and Pareto local search, this paper suggests a simple yet efficient memetic algorithm for combinatorial multiobjective optimization problems: MoMad. It decomposes a combinatorial multiobjective problem into a number of single objective optimization problems using an aggregation method. MoMad evolves three populations: popula...
متن کاملMEMOTS: a memetic algorithm integrating tabu search for combinatorial multiobjective optimization
We present in this paper a new multiobjective memetic algorithm scheme called MEMOX. In current multiobjective memetic algorithms, the parents used for recombination are randomly selected. We improve this approach by using a dynamic hypergrid which allows to select a parent located in a region of minimal density. The second parent selected is a solution close, in the objective space, to the fir...
متن کاملMultiobjective Image Data Hiding Based on Neural Networks and Memetic Optimization
This paper presents a hybridization of neural networks and multiobjective memetic optimization for an adaptive, robust, and perceptual data hiding method for colour images. The multiobjective optimization problem of a robust and perceptual image data hiding is introduced. In particular, trade-off factors in designing an optimal image data hiding to maximize the quality of watermarked images and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft Comput.
دوره 13 شماره
صفحات -
تاریخ انتشار 2009